Exercise 12

Using cylindrical coordinates and the orthonormal (orthogonal normalized) vectors $\mathbf{e}_{r}, \mathbf{e}_{\theta}$, and \mathbf{e}_{z} (see Figure 1.4.8),
(a) express each of $\mathbf{e}_{r}, \mathbf{e}_{\theta}$, and \mathbf{e}_{z} in terms of $\mathbf{i}, \mathbf{j}, \mathbf{k}$ and (x, y, z); and
(b) calculate $\mathbf{e}_{\theta} \times \mathbf{j}$ both analytically, using part (a), and geometrically.

Solution

The relevant part of Figure 1.4.8 is shown here.

Start by calculating the radial unit vector.

$$
\mathbf{e}_{r}=\frac{\mathbf{r}}{\|\mathbf{r}\|}=\frac{(x, y, 0)}{\sqrt{x^{2}+y^{2}}}=\frac{(x, y, 0)}{r}=\left(\frac{x}{r}, \frac{y}{r}, 0\right)=\frac{x}{r} \mathbf{i}+\frac{y}{r} \mathbf{j}
$$

The azimuthal unit vector is perpendicular to the radial unit vector in the $x y$-plane, which means their dot product is zero.

$$
\mathbf{e}_{\theta} \cdot \frac{(x, y, 0)}{\sqrt{x^{2}+y^{2}}}=0 \quad \Rightarrow \quad \mathbf{e}_{\theta}=\frac{(\pm y, \mp x, 0)}{\sqrt{x^{2}+y^{2}}}
$$

Since \mathbf{e}_{θ} points to the upper left, we choose

$$
\mathbf{e}_{\theta}=\frac{(-y, x, 0)}{\sqrt{x^{2}+y^{2}}}=\frac{(-y, x, 0)}{r}=\left(-\frac{y}{r}, \frac{x}{r}, 0\right)=-\frac{y}{r} \mathbf{i}+\frac{x}{r} \mathbf{j} .
$$

Finally,

$$
\mathbf{e}_{z}=\mathbf{k} .
$$

Use these formulas to determine the desired cross product.

$$
\begin{aligned}
\mathbf{e}_{\theta} \times \mathbf{j} & =\left(-\frac{y}{r} \mathbf{i}+\frac{x}{r} \mathbf{j}\right) \times \mathbf{j} \\
& =-\frac{y}{r}(\mathbf{i} \times \mathbf{j})+\frac{x}{r}(\mathbf{j} \times \mathbf{j}) \\
& =-\frac{y}{r}(\mathbf{k}) \\
& =-\frac{y}{r} \mathbf{k}
\end{aligned}
$$

